
5352 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Efficient In-Loop Filtering Based on Enhanced
Deep Convolutional Neural Networks for HEVC

Zhaoqing Pan , Senior Member, IEEE, Xiaokai Yi, Yun Zhang , Senior Member, IEEE,

Byeungwoo Jeon , Senior Member, IEEE, and Sam Kwong , Fellow, IEEE

Abstract— The raw video data can be compressed much by
the latest video coding standard, high efficiency video coding
(HEVC). However, the block-based hybrid coding used in HEVC
will incur lots of artifacts in compressed videos, the video quality
will be severely influenced. To settle this problem, the in-loop
filtering is used in HEVC to eliminate artifacts. Inspired by
the success of deep learning, we propose an efficient in-loop
filtering algorithm based on the enhanced deep convolutional
neural networks (EDCNN) for significantly improving the per-
formance of in-loop filtering in HEVC. Firstly, the problems
of traditional convolutional neural networks models, including
the normalization method, network learning ability, and loss
function, are analyzed. Then, based on the statistical analyses,
the EDCNN is proposed for efficiently eliminating the artifacts,
which adopts three solutions, including a weighted normalization
method, a feature information fusion block, and a precise loss
function. Finally, the PSNR enhancement, PSNR smoothness,
RD performance, subjective test, and computational complex-
ity/GPU memory consumption are employed as the evaluation
criteria, and experimental results show that when compared with
the filter in HM16.9, the proposed in-loop filtering algorithm
achieves an average of 6.45% BDBR reduction and 0.238 dB
BDPSNR gains.

Index Terms— Convolutional neural networks, high efficiency
video coding, in-loop filtering.

I. INTRODUCTION

THE appearance of the video coding standard,
H.265/HEVC, has greatly improved the efficiency of

Manuscript received April 4, 2019; revised August 12, 2019, October 29,
2019, and January 18, 2020; accepted March 18, 2020. Date of publication
March 27, 2020; date of current version April 2, 2020. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61971232, in part by the Six Talent Peaks Project of Jiangsu Province
under Grant XYDXXJS-041, in part by the Project through the Priority Aca-
demic Program Development of Jiangsu Higher Education Institutions, and in
part by the Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Yun He. (Corresponding
author: Zhaoqing Pan.)

Zhaoqing Pan and Xiaokai Yi are with the School of Computer and
Software, Jiangsu Collaborative Innovation Center on Atmospheric Environ-
ment and Equipment Technology, Engineering Research Center of Digital
Forensics, Ministry of Education, Nanjing University of Information Science
and Technology, Nanjing 210044, China (e-mail: zhaoqingpan@nuist.edu.cn;
xyi@nuist.edu.cn).

Yun Zhang is with the Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
yun.zhang@siat.ac.cn).

Byeungwoo Jeon is with the School of Electronic and Electrical Engi-
neering, Sungkyunkwan University, Suwon 440746, South Korea (e-mail:
bjeon@skku.edu).

Sam Kwong is with the Department of Computer Science, City University
of Hong Kong, Hong Kong, China (e-mail: cssamk@cityu.edu.hk).

Digital Object Identifier 10.1109/TIP.2020.2982534

Fig. 1. The in-loop filtering in HEVC.

video compression. Compared with the previous video coding
standard, H.264/AVC [1], HEVC achieves approximately
double compression ratio [2]. However, with the widespread
applications of multimedia technology, the multimedia data
has exploded. Even if HEVC can extremely compress the
raw video data, the limited bandwidth and storage space
have greatly restricted the spread of compressed video at
the same time. Therefore, in order to improve the subjective
video quality as much as possible with lower bitrate,
the optimizations for HEVC are necessary.

Since the block-based hybrid coding used in HEVC [3],
the compression artifacts have come into the encoded video,
such as blocking artifacts, ringing artifacts, color excursion,
and so on. To address these artifact problems, the in-loop
filtering is adopted in HEVC for significantly eliminating those
artifacts, and enhancing the reconstructed video quality. Fig. 1
shows an example of the in-loop filtering in HEVC. It consists
of two parts: deblocking filter (DF) [4] and sample adaptive
offset (SAO) [5]. The purpose of DF is to reduce blocking
artifacts by performing adaptive filters for different boundary
types. And the DF is reported to achieve an average of 2.3%
BD-rate reduction with the same video quality [6]. The main
function of SAO is to attenuate ringing artifacts by adding
an offset for each reconstructed sample of its category, and
the SAO is shown to achieve an average of 3.5% BD-rate
reduction [6]. To intuitively show the achievements of in-loop
filtering, we perform comparisons on various in-loop filtering
techniques, and the results are shown in Fig. 2. We can see that
the compressed picture without filtering has the smallest PSNR
for the objective evaluation, and from the subjective analysis,
it has lots of artifacts, such as block artifacts in the horse,
and ringing artifacts in the man. For the compressed picture

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1390-399X
https://orcid.org/0000-0001-9457-7801
https://orcid.org/0000-0002-5650-2881
https://orcid.org/0000-0001-7484-7261


PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5353

Fig. 2. The performance comparison among different loop filtering algorithms. (The 10th frame of Keiba encoded by the low-delay coding structure with
QP37). (a) Original picture. (b) Compressed picture without filtering (PSNR: 30.61 dB). (c) Compressed picture with the DF (PSNR: 30.73 dB). (d) Compressed
picture with the SAO (PSNR: 30.66 dB). (e) Compressed picture with DF+SAO (PSNR: 30.78 dB).

with the DF, the obvious blocking artifact in Fig. 2 (b) is
eliminated. And as shown in Fig. 2 (d), the obvious ringing
artifact in Fig. 2 (b) is eliminated by using the SAO. We can
observe that the in-loop filtering can efficiently enhance the
quality of compressed video.

Inspired by the success of deep learning, a large number of
convolutional neural networks (CNN) [7] have emerged, and
they have shown that CNN achieves excellent performance
in image processing. A typical CNN model is composed
of different layers, including input layer, hidden layer, and
output layer. Among these layers, the hidden layer plays an
important role, it is used to obtain the local information of
images. Through the combination of different convolutions
in the hidden layer, the mapping relationship between the
input and output can be accurately modeled. There are several
notable CNN based image restoration and image denoising
works been proposed. Dong et al. [8] proposed an SRCNN
for super-resolution by using the CNN to learn an end-to-
end image mapping, and it turns out that it can generate
higher resolution images than traditional methods. For further
improving the reconstruction results, the FSRCNN was also
proposed by Dong et al. [9] as an extension of the SRCNN.
The FSRCNN uses the deconvolution layer to replace the
bicubic interpolation, and it can compensate for the loss of
the low resolution to high resolution, moreover, smaller filter
sizes and more mapping layers are added for accelerating
the training. Kim et al. [10] proposed a deep CNN model,
named VDSR, whose model architecture is deepened by using
20 weight layers, and it achieves an outstanding performance.
Zhang et al. [11] proposed a denoising convolutional neural

networks (DnCNN), in which the residual learning is used
to remove the latent clean image from the noise observation,
meanwhile, the residual learning and batch normalization are
used to speed up the training process, and boost the denoising
performance. Zhang et al. [12] also proposed a fast and
flexible denoising network (FFDNet) to handle various noise
levels, in which the downsampled sub-images and tunable
noise level maps are adopted as the input. The noisy image
is downsampled to speed up the training process, and the
tunable noise level map is added to reduce various noise levels
as well as spatially variant noise. Since these CNN models
have not fully considered the optimization problems of in-loop
filtering, they hardly maximize the visual quality enhancement
in HEVC.

In this paper, an efficient in-loop filtering algorithm based
on optimized enhanced deep CNN (EDCNN) is proposed. The
proposed EDCNN based in-loop filtering algorithm employs
efficient network optimization methods to establish a precise
mapping relationship between the reconstructed and uncom-
pressed videos. Overall, the main contributions of this paper
are summarized as follows.

• The advantages and disadvantages of existing CNN based
in-loop filtering methods are analyzed. For obtaining
high quality reconstruction results, some efficient CNN
optimization methods are adopted, including a weighted
normalization method, a feature information fusion block,
and a precise loss function.

• Based on the above optimized methods, we propose
an EDCNN based filter to efficiently eliminate artifacts

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5354 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

in compressed video, and improve the video subjective
quality.

The rest of this paper is organized as follows. The related
works are summarized in Section II. Section III describes
the details of the proposed EDCNN based in-loop filtering
algorithm. Experimental results are presented in Section IV.
Finally, Section V concludes this paper.

II. RELATED WORKS

There are several in-loop filtering methods that have been
proposed to eliminate artifacts. Yang et al. [13] proposed an
SAO optimization method, in which the human visual charac-
teristics are introduced into the SAO optimization process. For
overcoming the limitations of these local image correlations
based in-loop filtering methods, Ma et al. [14] utilized the
nonlocal similarities to improve compression performance.
In [15], Tsai et al. utilized a wiener-based adaptive filter to
reduce artifacts. Zhang et al. [16] proposed a novel denoising
method, in which the overlapped-block transform coefficients
are estimated from the non-local blocks. Combined with the
quantization noise model and block similarity prior model,
the compression artifacts are well reduced. Zhang et al. [17]
proposed a novel transform-domain adaptive in-loop filtering
method based on the fusion of transform coefficients and non-
local transform coefficients in similar blocks. Zhang et al. [18]
utilized the low-rank constraint based image nonlocal prior
knowledge to reduce artifacts. However, the entire structure
of these in-loop filtering is not enormously changed by these
methods, the achieved filtering performance is limited. Thus,
new loop filtering methods should be considered to efficiently
eliminate compression artifacts.

Moreover, many video quality enhancement works based
on CNN for HEVC have been proposed. These works can
efficiently reduce artifacts, and obtain a higher video quality
performance. Park and Kim [19] proposed an in-loop filtering
CNN (IFCNN), which is an extension of SRCNN. In IFCNN,
the predicted residuals between the input and original images
are used as the output. Dai et al. [20] proposed a VRCNN,
in which the variable filter sizes are used for adapting to the
variable block sizes in HEVC. Yang et al. [21] proposed a
novel quality enhancement CNN (QECNN), which consists
of a QECNN-I model for I pictures, and a QECNN-P model
for P pictures. By considering the inter coding information,
the QECNN-P model can efficiently improve the quality of
P pictures. In [22], a temporal CNN architecture was pro-
posed to reduce artifacts, in which the temporal correlation
of consecutive pictures is used. Zhang et al. [23] proposed
a residual highway CNN (RHCNN), in which the highway
unit is used to protect the feature information. Moreover,
the shortcut in RHCNN can be used to reconstruct the image
with more detailed information, and the vanishing gradient
problem [24] is well solved. However, these networks have
simple architecture and small amount of network parameters,
the reconstruction information cannot be well learned in the
image mapping process. In addition, since the noise in the
training process is not well eliminated by these networks,
the reconstruction performance will be greatly influenced.

III. PROPOSED EDCNN BASED IN-LOOP

FILTERING ALGORITHM

In this section, we will describe the network optimiza-
tion methods in our proposed network in details. Firstly,
the limitations of existing methods are analyzed. Then for
addressing these problems, the proposed solutions are put
forward, including a weighted normalization method, a feature
information fusion block, and a precise loss function. Finally,
the overall network architecture is given.

A. The Normalization Method

Generally, with the increased layers of network, the learning
results will be better. However, a deep network having a large
number of layers and complicated parameter updating will be
difficult to train. The reason is that the new input distribution
needs to be constantly adapt to the high-level layer, and this
phenomenon is called internal covariate shift [25]. To address
this problem, the batch normalization is proposed to flexibly
reparameterize the input, which can be formulated as

yi = B N(xi ), (1)

where xi , yi are the input and output, respectively; B N
represents the batch normalization, and it consists of four
steps. First, the mean of mini-batch, μ, is calculated as

μ = 1

N

N∑
i=1

xi , (2)

where N is the number of values over a mini-batch. Then,
the variance of mini-batch, σ 2, is calculated, which is formu-
lated as

σ 2 = 1

N

N∑
i=1

(xi − μ)2 . (3)

Next, based on the above mean and variance, the input, xi ,
is normalized by

x̂i = xi − μ√
σ 2 + ε

, (4)

where ε is the value to prevent the divisor from being zero.
Finally, the normalized value, yi , is scaled and shifted to suit
for output distribution, it is defined as

yi = γ x̂i + β, (5)

where γ and β are parameters to be learned.
Moreover, the batch normalization will accelerate the train-

ing, and help to achieve a better performance. A great number
of image enhancement networks have used the batch nor-
malization, such as SRResNet [26], DnCNN [11], and so
on. However, the batch normalization adds the noise which
is not conducive to reconstructed image to the gradients.
To address this problem, the weight normalization [27] is
introduced to replace the batch normalization. While, the batch
normalization and the weight normalization are both repara-
meterization methods, they are different from each other in
that the object of batch normalization is the input, and that of
the weight normalization is the weight vector. By using the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5355

TABLE I

THE DATA SET OF NORMALIZATION METHODS

TABLE II

TEST CONDITIONS

weight normalization, the dependencies of mini-batch will not
be introduced, and less noise will be introduced. The weight
normalization is formulated as

ω = g

‖v‖v, (6)

where ω represents the weight vector; g represents a scalar
parameter; v represents a parameter vector.

To analyze the performance of these two normalization
methods, we implement them into the proposed network.
The test conditions are that, (1) 10 standard video sequences
in Table I are selected to be trained, and we will extract
50 frames in each sequence as the data set. After shuffling
the data set, 490 frames are used for training, and the other
frames are used for validation. It is noteworthy that the output
images are uncompressed images, and the input images are
compressed by HEVC. The encoding conditions are shown
in Table II; (2) The input images are split into 64 × 64
patches, with the stride of 32. The experimental results are
shown in Fig. 3. It can be seen that the network with
weight normalization has a better performance than that with
batch normalization, the weight normalization has smaller loss
between the construction pictures and original pictures. Based
on this observation, the weight normalization is adopted in the
proposed network.

B. Proposed Feature Information Fusion Block

Each layer of neural network aims to extract the feature
information, and the mapping relationships between the input
pictures and output pictures can be established according to
the learned information. Generally, a high-precise mapping
relationship can generate a high-quality reconstruction result.
Thus, it is essential that we should strengthen the extraction
ability of feature information. Inspired by [28], we propose a
feature information fusion block to enhance the learning ability
of the neural network in this paper, and its structure is shown
in Fig. 4.

Fig. 3. The training loss comparison between the weight normalization and
the batch normalization.

Fig. 4. The structure of proposed feature information fusion block.

As shown in Fig. 4, the proposed feature information fusion
block consists of two branches, the right branch and the left
branch, respectively. For the left branch, it has the size of
α sub-branches, and each sub-branch consists of one 1 × 1
convolution layer and one 3×3 convolution layer. For the 1×1
convolution layer, it is used to change the dimensionality of
input features. And, the 3 × 3 convolution layer is helpful to
enhance the learning ability of the neural networks. After the
convolution layer, the rectified linear unit (ReLU) activation
layer is added to introduce more nonlinearity. Moreover,
the output of the left branch, which is obtained by concate-
nating the outputs of its sub-branches, is added up with the
right branch, and it is a typical shortcut connection [29].
Finally, the proposed feature information fusion block can be
summarized as⎧⎪⎨

⎪⎩
xi = x, 1 ≤ i ≤ α or i = β,

y = σ(x1)
⊗

σ(x2)
⊗ · · · ⊗ σ(xα),

z = xβ + y,

(7)

where xi is the input of the left and right branches of the pro-
posed feature information fusion block, which is obtained by

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5356 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE III

THE PERFORMANCE OF DIFFERENT α SETTINGS

duplicating x , and x is the input of the proposed fusion block;
y indicates the output of the left branch; σ(·) represents the
convolution operation;

⊗
means the concatenation operation;

z is the output of the proposed fusion block.
In the proposed feature information fusion block, the left

branch is used to enhance the learning ability of the net-
work, and it has the size of α sub-branches. If the size of
sub-branches is small, which will degrade the learning ability
of the network. On the contrary, the large size of sub-branches
will boost the learning ability, but the training complexity
will be increased significantly. In order to achieve the optimal
filtering performance, a group of α values, including 2, 4, 8,
16, and 32, are tested. The test conditions are same with that
using in Section III-A, and four video sequences with various
resolutions are tested. The experimental results are shown
in Table III. We can see from Table III, that when α equals
to 4, the network achieves the optimal PSNR performance,
and the PNSR value reaches up to 36.99 dB. Hence, the left
branch of the proposed feature information fusion block adopts
4 sub-branches, and α is set to 4 in this paper.

To enhance the learning ability of the proposed feature
information fusion block, we use the concatenation operation
in the proposed fusion block to achieve the fusion function.
The operation of concatenating fuses the features extracted by
convolution layer, the dimensionality will be expanded. Since
the input dimensionality and output dimensionality of add
operation are identical, the input dimensionality of left branch
should be reduced. There are two ways to reduce the input
dimensionality, the one jointly uses one 1×1 convolution layer
and one 3×3 convolution layer to reduce the dimensionality of
features, its structure is shown in Fig. 4, and the other directly
uses the 3 × 3 convolution layer to reduce the dimensionality
of features, whose structure is shown in Fig. 5.

To prove the efficiency of the adopted dimensionality reduc-
tion method, the performance of these two dimensionality
reduction methods is compared, and the results are tabulated
in Table IV. We can see that the proposed fusion block
with 1 × 1 and 3 × 3 convolution layers achieves better
performance than that only with 3 × 3 convolution layer, and
it obtains 0.03 dB PSNR increase. The reason is that the 1×1
convolution layer makes the network deeper, and the ReLU
introduces more nonlinearity to the network. Both of these
two are helpful to improve the learning ability of proposed
fusion block. Hence, the 1 × 1 and 3 × 3 convolution layers
are jointly used in the proposed feature information fusion
block.

In order to demonstrate the efficiency of the proposed fea-
ture information fusion block, the performance of the proposed

Fig. 5. The feature information fusion block with only 3 × 3 convolution
layer.

TABLE IV

THE PSNR PERFORMANCE OF DIFFERENT DIMENSION

REDUCTION METHODS

TABLE V

THE PERFORMANCE OF THE NETWORK WITH PROPOSED FUSION

BLOCK AND THAT WITHOUT FUSION BLOCK

network is compared with that without using the proposed
fusion block. The analyses results are shown in Table V.
In the table, NF indicates the network contains the proposed
fusion block, and NWF represents the network does not use
the proposed fusion block. We can observe from Table V that
the network using the proposed fusion block achieves better
performance than that without using the proposed fusion block,
and the network using the proposed fusion block obtains an
average of 0.13 dB PSNR increase. These results turn out that
the proposed fusion block works efficiently for the filtering
task.

To sum up, by applying the proposed fusion block, more
feature information can be kept in nonlinearity, and the fea-
ture information which comes from the low-level layer can
efficiently transmit into the high-level layer. As a result, better
reconstruction results can be achieved. Furthermore, due to the
shortcut connection used in the network, the residual between
the compressed image and original image is easier to be

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5357

learned, the vanishing gradient problem is well addressed, and
the training is accelerated.

C. Proposed Adaptive Loss Function

For constantly training the mapping relationship between
the reconstructed picture and its ground truth, the loss function
is used to reflect the deviation between the input and output,
and we can obtain a precise pixel prediction by minimizing
the loss.

In recent CNN based works for HEVC [21], [23], [30],
the mean square error (MSE) is most used, and it is calculated
by

LM S E (�) = 1

N

N∑
n=1

‖F (Xn; �) − Yn‖2
2 , (8)

where � is network parameter; Xn is the compressed picture;
Yn is its ground truth. However, the MSE will over penalize
the errors by the square, and it has been proved that the MSE
cannot capture the intricate characteristics of the HVS [31],
[32]. Unlike the MSE, the mean absolute error (MAE) will not
over penalize larger errors, thus it is propitious to end-to-end
learning. The MAE loss function is defined as

LM AE (�) = 1

N

N∑
n=1

‖F (Xn; �) − Yn‖1 . (9)

By using the MAE based loss function, the network is easier
to obtain the precise results due to the MAE is not sensitive
to the outlier. However, the MAE is hard to descend. On the
contrary, the MSE loss function is sensitive to errors, and it can
easily achieve a local minimum. Based on these characteristics,
we propose a mixed loss function in this paper, and it is defined
as

LM I X = δLM S E + (1 − δ)LM AE , (10)

where δ is an adaptive parameter according to loss conver-
gence, it is defined as

δ =
⎧⎨
⎩

1 i f
1

N

∑N

i=1
|Lc−i+1 − Lc−i | < ξ,

0 otherwi se,
(11)

where N is the number of continuous epoch, and it equals to 3;
c represents the number of current epoch; L is the loss value;
ξ is the threshold, which is used to control the performance
of the loss function.

To come up with the optimal ξ , a group of ξ values from
0.009 to 0.018 are tested with four video sequences (Bas-
ketballPass, BlowingBubbles, BQSquare, and RaceHorses),
the average PSNR of each ξ is shown in Fig. 6. It can be
seen that when ξ equals to 0.015, the proposed loss function
achieves the best performance. Hence, the threshold ξ for the
proposed loss function is set to 0.015 in this paper.

To prove the efficiency of the proposed loss func-
tion, the objective and subjective qualities are compared
among these three loss functions (MSE, MAE, and pro-
posed loss function), the experimental results are presented
in Figs. 7 and 8. From Fig. 7, it can be obviously seen that the

Fig. 6. The performance of proposed loss function with different
threshold ξ .

Fig. 7. Performance comparison among different loss functions.

validation PSNR of the proposed loss function outperforms the
loss functions MSE and MAE in general. Meanwhile, we can
see from Fig. 8 that the zoomed regions of proposed loss
function has the best performances with less artifacts. Based
on these two observations, we can see that the proposed loss
function efficiently improves the network’s performance.

D. Proposed EDCNN Architecture

Based on above analyses, the proposed in-loop filtering
algorithm is modeled, and the network architecture is shown
in Fig. 9. As shown in Fig. 9, the proposed EDCNN network
consists of 7 blocks, each block contains 4 convolution and
ReLU layers, in which each convolution layer has an operation
of weight normalization. The blocks of convolution layers
are used to keep the identical channel between the low-level
layer and high-level layer. The overall proposed network has
16 layers, and the network parameters are listed in Table VI.
Moreover, the input channel of the block is firstly duplicated
in 4 equal parts, after the convolutional operating, the channels
of 4 parts will be added in quantity, and then the addition of 4
parts will be added with the input feature maps in values.
When the feature fusion is completed, it will be processed
by a convolution layer for channel transformation. With the
exception of shortcut connections in blocks, a long shortcut
connection from the original input without processing by

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5358 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 8. The subjective image quality comparison. (The 1st frame of
PartyScene encoded by low-delay coding structure with QP32). (a) Ground
truth. (b) MSE (PSNR: 34.92 dB). (c) MAE (PSNR: 35.41 dB). (d) Proposed
(PSNR: 35.53 dB).

Fig. 9. The architecture of proposed EDCNN.

Fig. 10. The proposed EDCNN based in-loop filtering in HEVC.

convolution layer to the final output is established for obtaining
the further precise mapping relationship.

Finally, in order to improve the encoding performance of
HEVC, the proposed in-loop filtering algorithm is embedded
into the HEVC reference software, as shown in Fig. 10. The
filter in HEVC is replaced by the proposed EDCNN based
in-loop filtering.

TABLE VI

THE DETAILED NETWORK PARAMETERS

IV. EXPERIMENTAL RESULTS

In this section, we will present the performance of the
proposed EDCNN based in-loop filtering algorithm in detail,
including experimental settings, comparisons on BDBR and
BDPSNR, comparisons on objective visual performance, com-
parisons on rate distortion curves, comparisons on subjective
visual quality, and comparisons on video quality smoothness.

A. Experimental Settings

1) Data Preparation: Twenty-four HEVC standard video
sequences [33] in Table VII with various resolutions are
adopted, and these twenty-four video sequences are divided
into two groups: twenty video sequences are used for training,
and four videos are used for testing. For obtaining the mapping
relationships, the video sequences encoded by HEVC are used
as the input of networks, and the uncompressed raw video
sequences are used as the output of networks. The encoding
platform is HEVC reference software HM16.9 [34]. Consid-
ering that different QPs in HEVC have different compression
results with varying degrees of artifacts, four different QPs (22,
27, 32 and 37) are set to ensure the results of the experiments
more representative. Besides, the other encoding conditions
are set as follows, (1) the low-delay main (LD-main) and
random-access main (RA-main) coding structure are used;
(2) for the benchmark HM 16.9, it uses the default settings,
and the DF/SAO is turned on. On the contrary, the proposed
algorithm and the compared algorithms (Ledig et al. [26],
Zhang et al. [23]) are implemented in the HM16.9 with
DF/SAO off. Each sequence is encoded by HM16.9, and 1 to
50 frames are extracted into the data set, 3800 of which are
used for training, and the other frames are used for validating.
Generally, the training sequences and testing sequences should
be kept different, however, since twenty video sequences for
training are not enough, 100 to 150 frames of twenty training
video sequences, and 1 to 100 frames of four testing video
sequences, are used to verify the performance of networks,

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5359

TABLE VII

THE DATA SET

in which fifty frames of each training video are used to
simulate sequences with similar contents.

2) Training Settings: For expanding dataset, each input
picture and its corresponding ground truth are split into
64 × 64 patches, with a stride of 32. In our experiments,
the learning rate is set to 0.0001, and the adaptive moment esti-
mation (Adam) optimization method is used. Before starting
training, the training data are shuffled. The training platform
uses the ubuntu 16.04 operating system with Intel i7-6900K
CPU, 64 GB RAM, and NVIDIA 1080Ti GPUs.

B. Comparisons on BDBR and BDPSNR

To demonstrate the efficiency of the proposed filter,
the Bjontegaard delta bitrate (BDBR) and Bjontegaard delta
peak signal-to-noise rate (BDPSNR) [35] are used to evaluate
the performance of reconstructed results. The BDBR indicates
the bitrate saving of two algorithms under the equivalent
PSNR value, while the BDPSNR means the PSNR difference
between two algorithms at the same bitrate. And the proposed
EDCNN based filter is compared with the SRResNet in
Ledig et al. [26], and the RHCNN in Zhang et al. [23]. The
HEVC reference software HM 16.9 is used as the benchmark,
which uses the default settings, and the DF/SAO is turned
on. The proposed algorithm, Ledig’s algorithm [26], and
Zhang’s algorithm [23] are also implemented in HM 16.9,
but the DF/SAO is turned off. In order to make the SRResNet
in Ledig’s algorithm handle the filtering task, the stride of
convolutional layer is set to 1, and the padding mode is set to
the same mode. In Zhang et al. [23], the channels between the
input of highway unit and the output of concatenation are not
identical, this problem is addressed by doubling the channels
of the input of each highway unit in our paper. In addition,
the network of Zhang et al. [23] only processes the luminance
components filtering task, in order to make the network handle
the YUV components filtering task, a 1×1 convolution layer is
added after the last convolution layer. The experimental results
are compared and summarized in Tables VIII and IX.

It can be seen from Table VIII that when using the low-delay
coding structure, the BDBR of Ledig’s algorithm [26] is
from −7.76% to7.78%, 0.92% on average, and its BDP-
SNR is from −0.266 dB to 0.342 dB, −0.003 dB on aver-
age. For Zhang et al. [23], the BDBR is from −8.81% to

7.87%, 0.02% on average, and its BDPSNR increases from
−0.204 dB to 0.397 dB, 0.044 dB on average. For the
proposed algorithm, the BDBR decreases from −12.06% to
−1.77%, −6.27% on average, and its BDPSNR increases from
0.046 dB to 0.547 dB, 0.239 dB on average. From these values,
we can observe that under the low-delay coding structure,
the Ledig’s and Zhang’s algorithms only work efficiently for
video sequences with similar content with the training data,
which reflects that these two algorithms have bad generaliza-
tion capacity. On the contrary, the proposed algorithm achieves
the best RD performance, and efficiently improves the RD
performance for videos with various resolutions and contents.

Table IX presents the encoding results of random-access
coding structure, we can see that the BDBR of Ledig’s
algorithm [26] is from −1.94% to 5.86%, 1.33% on average,
and its BDPSNR is from −0.221 dB to 0.146 dB, −0.022 dB
on average. These values reflect that the Ledig’s network can
not efficiently address the video quality enhancement task. For
Zhang’s algorithm [23], its BDBR is from −10.68% to 1.07%,
−3.64 on average, and its BDPSNR is from −0.013 dB to
0.317 dB, 0.146 dB on average. For our proposed algorithm,
the BDBR decreases from −12.31% to −0.41%, −6.62%
on average, and its BDPSNR increases from 0.032 dB to
0.427 dB, 0.237 dB on average. From these values, it can be
seen that the proposed algorithm efficiently handles the filter-
ing task, and achieves the best RD performance. In addition,
we can observe that the performance of Zhang’s algorithm [23]
in our paper are different from that in its original paper,
the main reason is that individual models are trained for
different QPs in [23], while different QPs share the same
model in our paper. Moreover, one significant contribution
of our paper is that the proposed model uses one model to
perform filtering for different QPs in encoding process, which
means the proposed model could handle the filtering task for
video with different distortions. Hence, compared with the
other CNN-based filtering algorithms that use different models
for different QPs, such as Zhang et al. [23], the proposed
model has better practicality in video coding.

C. Comparisons on Objective Visual Quality

To intuitively show the achievements of the proposed
algorithm, we also perform comparisons on average PSNR

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5360 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE VIII

RD PERFORMANCE COMPARISON FOR LOW-DELAY CODING STRUCTURE

TABLE IX

RD PERFORMANCE COMPARISON FOR RANDOM-ACCESS CODING STRUCTURE

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5361

TABLE X

THE PSNR STANDARD DEVIATIONS OF LOW-DELAY CODING STRUCTURE (UNIT: d B )

TABLE XI

THE PSNR STANDARD DEVIATIONS OF RANDOM-ACCESS CODING STRUCTURE (UNIT: d B )

for each algorithm with different QPs, and the results are
presented in Fig. 11. We can see that for the videos with less
distortions (i.e., QP equals to 22), the Ledig’s and Zhang’s
networks can not well improve the video quality. While the
proposed algorithm can efficiently improve the video quality
in different-level distortions (i.e., QP equals to 22, 27, 32,
and 37.). In addition, our proposed EDCNN based filtering
algorithm obtains significant PSNR increase than the Ledig’s
and Zhang’s algorithms. Overall, we can make a conclusion

that our proposed filtering algorithm efficiently improves the
video objective quality for HEVC.

D. Comparisons on Rate Distortion Curves

To show the RD performance of each algorithm, the RD
curves of each algorithm are given in Fig. 12. The values of
bitrate and PSNR in Fig. 12 denote the total average encoding
results of these 24 test video sequences. We can see that the
proposed filtering algorithm achieves the best RD performance

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5362 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 11. The PSNR performance comparison for different QPs. (a) Low-delay coding structure. (b) Random-access coding structure.

Fig. 12. RD curvs comparison. (a) Low-delay coding structure. (b) Random-access coding structure.

in both low-delay and random-access coding structures. These
results prove that the proposed algorithm efficiently optimizes
the RD performance of HEVC.

E. Comparisons on Subjective Visual Quality

In order to show the video subjective quality of differ-
ent filtering algorithms, we select five video sequences to
perform comparisons, including “BasketballDrive”, “Cactus”,
“Johnny”, “BQMall”, and “Keiba”. The results of these five
videos are presented in Fig. 13. The left side is the ground
truth of these five video sequences, and the image crops are
zoomed from these five videos. From left to right are the
subjective results for these four filtering algorithms, HM16.9,
Ledig et al. [26], Zhang et al. [23] and the proposed algorithm,
respectively. In Fig. 13, we can see that the compared areas
in HM16.9 have obvious artifacts, including ringing artifacts
and color excursion. The other three algorithms can reduce
most of artifacts, however, some obvious artifacts are still in
Ledig et al. [26], especially for the blocking artifacts. The arti-
facts are much reduced by Zhang et al. [23], but, the compared
areas become more blurring, and lots of details in image crops
are eliminated. Compared with these algorithms, the proposed
algorithm achieves a remarkable subjective quality with few
artifacts and more details. In the end, it can be concluded that

the visual performance of the proposed algorithm is superior
to the other three algorithms.

F. Comparisons on Video Quality Smoothness

To further verify the performance of the proposed filtering
algorithm, the video quality smoothness is used to test the
stabilities of video frames. The video quality smoothness
significantly affects the global subjective video quality, thus
the objective PSNR standard deviation is used as the criterion.
The experimental results of the PSNR standard deviation
for each algorithm are shown in Tables X and XI. From
Table X, we can see that the average PSNR quality fluctuation
ranges of low-delay coding structure are (0.61, 0.73), (0.59,
0.62), (0.55, 0.64), and (0.64, 0.69) for the filter in HM16.9,
Ledig et al. [26], Zhang et al. [23], and proposed algorithm,
respectively. The average PSNR deviations for these four
algorithms are 0.68 dB, 0.63 dB, 0.62 dB, and 0.66 dB, respec-
tively. For the random-access coding structure in Table XI,
we can see that the average PSNR quality fluctuation ranges
are (0.59, 0.94), (0.60, 0.75), (0.61, 0.73), and (0.62, 0.78)
for the filter in HM16.9, Ledig et al. [26], Zhang et al. [23],
and proposed filter, respectively. The average PSNR deviations
for these four models are 0.74 dB, 0.67 dB, 0.76 dB, and
0.68 dB, respectively. From these results, we can see that the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5363

Fig. 13. Video subjective quality comparison (“BasketballDrive”: the 150th frame with QP of 22; “Cactus”: the 150th frame with QP of 22; “Johnny”: the
150th frame with QP of 22; “BQMall”: the 150th frame with QP of 22; “Keiba”: the 100th frame with QP of 22.).

Fig. 14. PSNR fluctuation curves for different algorithms. Note that it shows the frame range (100∼150) of vidyo3 at QP32. (a) Low-delay coding structure.
(b) Random-access coding structure.

PSNR fluctuation of the proposed algorithm is better than the
original filter in HM 16.9, and achieves similar performance
with Ledig’s and Zhang’s algorithms.

To intuitively show the video quality smoothness, the PSNR
fluctuation curves of each filtering algorithm are presented
in Figs. 14 and 15. Two video sequences are selected, one is

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5364 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 15. PSNR fluctuation curves for different algorithms. Note that it shows the frame range (1∼100) of RaceHorses at QP32. (a) Low-delay coding
structure. (b) Random-access coding structure.

TABLE XII

COMPUTATIONAL COMPLEXITY ANALYSES RESULTS (UNIT: %)

the “Vidyo3”, which has large background content and moves
slow; the other is the “RaceHorse”, the content in this video
has fast motion activity. It can be observed from these two
figures that these four algorithms have quite similar PSNR
fluctuation, and the proposed filtering algorithm achieves the
best PSNR values among these four algorithms.

G. Comparisons on Computational Complexity and GPU
Memory

To evaluate the computational complexity of each
CNN-based filtering algorithm, the encoding time is used to
calculate the complexity, and it is defined as

c =
(Tθ − Th

Th

)
× 100% (%), (12)

where Tθ indicates the total encoding time consumed by
CNN-based filtering algorithm, which includes CPU running
time for the original HM16.9, and GPU testing time for
CNN-based filtering. Th represents the encoding time of the
HM 16.9 with using original filtering algorithm. The analyses
results of each CNN-based filtering algorithm are tabulated
in Table XII.

From Table XII, we observe that when using the low-delay
coding structure, the encoding time of Ledig et al. [26],
Zhang et al. [23], and proposed algorithm increases an
average of 76%, 182%, and 172%, respectively, as com-
pared with the original HEVC encoder. When using the
random-access coding structure, the growth rate of encoding
time of Ledig et al. [26], Zhang et al. [23], and proposed
algorithm is 113%, 267%, and 247%, respectively, as com-
pared with the original HEVC filtering algorithm. We can

TABLE XIII

ANALYSES RESULTS OF MODEL SIZE AND GPU MEMORY

see that the computational complexity of Zhang’s algorithm
is with the largest value, the reason is that its quantity of
convolutional kernel is larger than the other two algorithms.
In addition, we can see that the proposed fusion block has
four sub-branches, which is larger than two branches in
Zhang et al. [23], while the computational complexity of
the proposed network is smaller than Zhang et al. [23],
the reason is that the quantity of convolutional kernel in
Zhang’s highway unit is larger than that in our proposed
fusion block. Overall, the proposed network achieves better
computational complexity performance than Zhang et al. [23],
and a similar performance with the Ledig’s algorithm.

Furthermore, the model size and GPU memory of each
CNN are analyzed. The model size reflects the number of
network parameters, and the cost of GPU memory depends on
the model size and the size of feature maps in hidden layers.
The analyses results are listed in Table XIII. It can be seen
that the model size of Ledig et al. [26], Zhang et al. [23],
and proposed algorithm is 5.1 MB, 27.2 MB, and 18.2 MB,
respectively. For the GPU memory consumption, the Ledig’s
algorithm consumes 3859 MB GPU memory, and 4825 MB
GPU memory is needed for the Zhang’s algorithm. The
proposed algorithm needs 5193 MB GPU memory. From

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: EFFICIENT IN-LOOP FILTERING BASED ON EDCNN FOR HEVC 5365

these values, we can see that the model size of the proposed
network is smaller than that of the Zhang’s network, however,
the proposed network consumes larger GPU memory than the
cost of Zhang’s network, the main reason is that the sub-branch
of the proposed fusion block contains one 3 × 3 and one
1×1 convolution operations, while each branch of the highway
unit in Zhang’s network only contains one 3 × 3 convolution
operation.

V. CONCLUSIONS

To reduce the artifacts for HEVC encoded videos, we pro-
posed an in-loop filtering algorithm based on the EDCNN.
Firstly, the current works for in-loop filtering are analyzed.
Then, based on the analyses, the EDCNN with efficient
network tools is proposed. The proposed EDCNN consists of
a weighted normalization method, an efficient feature infor-
mation fusion block, and a precise loss function. By utilizing
the weight normalization, the internal covariate shift problem
is solved with less noise. Moreover, with the utilization of
feature information fusion block and precise loss function,
more feature information can be retained to reconstruct a
high quality video. The experimental results show that when
compared with the original filter in HM16.9, the proposed
EDCNN based in-loop filtering algorithm achieves an average
of 6.45% BDBR reduction and 0.238 dB BDPSNR gains. The
ability to eliminate artifacts of the proposed algorithm is much
better than the traditional in-loop filtering algorithms.

REFERENCES

[1] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[2] M. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC:
The new gold standard for video compression: How does HEVC
compare with H.264/AVC?” IEEE Consum. Electron. Mag., vol. 1, no. 3,
pp. 36–46, Jul. 2012.

[3] Z. Pan, J. Lei, Y. Zhang, and F. L. Wang, “Adaptive fractional-
pixel motion estimation skipped algorithm for efficient HEVC motion
estimation,” ACM Trans. Multimedia Comput., Commun., Appl., vol. 14,
no. 1, pp. 1–19, Jan. 2018.

[4] A. Norkin et al., “HEVC deblocking filter,” IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1746–1754, Dec. 2012.

[5] C.-M. Fu et al., “Sample adaptive offset in the HEVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1755–1764,
Dec. 2012.

[6] V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding
(HEVC) (Integrated Circuits and Systems). London, U.K.: Springer,
2014, pp. 200–203.

[7] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. Eur. Conf. Comput. Vis.
(ECCV). London, U.K.: Springer, 2014, pp. 184–199.

[9] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. Eur. Conf. Comput. Vis. (ECCV).
London, U.K.: Springer, 2016, pp. 391–407.

[10] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1646–1654.

[11] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[12] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,” IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[13] K. Yang, S. Wan, Y. Gong, H. R. Wu, and Y. Feng, “Perceptual based
SAO rate-distortion optimization method with a simplified JND model
for H.265/HEVC,” Signal Process., Image Commun., vol. 31, pp. 10–24,
Feb. 2015.

[14] S. Ma, X. Zhang, J. Zhang, C. Jia, S. Wang, and W. Gao, “Nonlocal
in-loop filter: The way toward next-generation video coding?” IEEE
Multimedia Mag., vol. 23, no. 2, pp. 16–26, Apr. 2016.

[15] C.-Y. Tsai et al., “Adaptive loop filtering for video coding,” IEEE J. Sel.
Topics Signal Process., vol. 7, no. 6, pp. 934–945, Dec. 2013.

[16] X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao, “Compression
artifact reduction by overlapped-block transform coefficient estimation
with block similarity,” IEEE Trans. Image Process., vol. 22, no. 12,
pp. 4613–4626, Dec. 2013.

[17] X. Zhang, W. Lin, K. Gu, Q. Li, S. Wang, and S. Ma, “Transform-
domain in-loop filter with block similarity for HEVC,” in Proc. Vis.
Commun. Image Process. (VCIP), Nov. 2016, pp. 1–4.

[18] X. Zhang et al., “Low-rank-based nonlocal adaptive loop filter for
high-efficiency video compression,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 10, pp. 2177–2188, Oct. 2017.

[19] W.-S. Park and M. Kim, “CNN-based in-loop filtering for coding
efficiency improvement,” in Proc. IEEE 12th Image, Video, Multidimen-
sional Signal Process. Workshop (IVMSP), Jul. 2016, pp. 1–5.

[20] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach for
post-processing in HEVC intra coding,” in Proc. MultiMedia Modeling
(MMM), 2017, pp. 28–39.

[21] R. Yang, M. Xu, T. Liu, Z. Wang, and Z. Guan, “Enhancing quality for
HEVC compressed videos,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 29, no. 7, pp. 2039–2054, Jul. 2019.

[22] J. W. Soh et al., “Reduction of video compression artifacts based on
deep temporal networks,” IEEE Access, vol. 6, pp. 63094–63106, 2018.

[23] Y. Zhang, T. Shen, X. Ji, Y. Zhang, R. Xiong, and Q. Dai, “Residual
highway convolutional neural networks for in-loop filtering in HEVC,”
IEEE Trans. Image Process., vol. 27, no. 8, pp. 3827–3841, Aug. 2018.

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

[26] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 105–114.

[27] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2016, pp. 901–909.

[28] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[30] Y. Li et al., “Convolutional neural network-based block up-sampling for
intra frame coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 28,
no. 9, pp. 2316–2330, Sep. 2018.

[31] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “A comprehensive eval-
uation of full reference image quality assessment algorithms,” in Proc.
19th IEEE Int. Conf. Image Process., Sep. 2012, pp. 1477–1480.

[32] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47–57, Mar. 2017.

[33] F. Bossen, Common Test Conditions and Software Reference Configura-
tions, document JCTVC-B300, JCTVC-J1100, Joint Collaborative Team
on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC
1/SC 29/WG 11, 10th Meeting, Stockholm, Sweden, Jul. 2012.

[34] HEVC Reference Model HM 16.9. Accessed: Dec. 20, 2017. [Online].
Available: https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags

[35] G. Bjontegaard, Calculation of Average PSNR Differences Between
RD-Curves, document TR VCEG-M33, ITU-T Q. 6/SG16 VCEG, 15th
Meeting, Austin, Texas, USA, Apr. 2001.

Zhaoqing Pan (Senior Member, IEEE) received the
Ph.D. degree in computer science from the City Uni-
versity of Hong Kong, Hong Kong, in 2014. In 2013,
he was a Visiting Scholar with the Department of
Electrical Engineering, University of Washington,
Seattle, WA, USA, for six months. He is currently
a Professor with the School of Computer and Soft-
ware, Nanjing University of Information Science and
Technology, Nanjing, China. His research interests
focus on video coding and image quality assessment.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



5366 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Xiaokai Yi received the B.S. degree in computer
science and technology from the Nanjing University
of Information Science and Technology, Nanjing,
China, in 2016, where he is currently pursuing the
M.S. degree in computer science and technology.
His research interests focus on video coding and
machine learning.

Yun Zhang (Senior Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering from
Ningbo University, Ningbo, China, in 2004 and
2007, respectively, and the Ph.D. degree in computer
science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS),
Beijing, China, in 2010. From 2009 to 2014, he was
a Postdoctoral Researcher with the Department of
Computer Science, City University of Hong Kong,
Hong Kong. From 2010 to 2017, he was an Assis-
tant Professor and an Associate Professor with the

Shenzhen Institutes of Advanced Technology (SIAT), CAS, Shenzhen, China,
where he is currently a Professor. His research interests include video
compression, 3D video processing, and visual perception.

Byeungwoo Jeon (Senior Member, IEEE) received
the B.S. (magna cum laude) and M.S. degrees in
electronics engineering from Seoul National Univer-
sity, Seoul, South Korea, in 1985 and 1987, respec-
tively, and the Ph.D. degree in electrical engineering
from Purdue University, West Lafayette, IN, USA,
in 1992. From 1993 to 1997, he was with Signal
Processing Laboratory, Samsung Electronics, South
Korea, where he conducted research and develop-
ment in video compression algorithms, the design
of digital broadcasting satellite receivers, and other

MPEG-related research for multimedia applications. Since September 1997,
he has been with the faculty of the School of Electronic and Electrical
Engineering, Sungkyunkwan University, South Korea, where he is currently
a Full Professor. He has served as the Project Manager of digital TV and
broadcasting in the Korean Ministry of Information and Communications from
March 2004 to February 2006, where he supervised all digital TV-related R&D
in Korea. He has authored many articles in the areas of video compression,
pre/post processing, and pattern recognition. His research interests include
multimedia signal processing, video compression, statistical pattern recogni-
tion, and remote sensing. He is a member of Tau Beta Pi and Eta Kappa Nu.
He is also a member of SPIE, IEEK, KICS, and KSOBE. He was a recipient
of the 2005 IEEK Haedong Paper Award in Signal Processing Society, South
Korea.

Sam Kwong (Fellow, IEEE) received the B.S.
degree in electrical engineering from the State Uni-
versity of New York at Buffalo in 1983, the M.S.
degree in electrical engineering from the University
of Waterloo, Waterloo, ON, Canada, in 1985, and
the Ph.D. degree from the University of Hagen,
Germany, in 1996. From 1985 to 1987, he was
a Diagnostic Engineer with Control Data Canada.
He joined Bell Northern Research Canada as a mem-
ber of Scientific Staff. In 1990, he became a Lecturer
with the Department of Electronic Engineering, City

University of Hong Kong, Hong Kong, where he is currently a Professor with
the Department of Computer Science. His research interests include video and
image coding and evolutionary algorithms.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 29,2020 at 06:24:21 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


